145 research outputs found

    Cerebral spectroscopic and oxidative stress studies in patients with schizophrenia who have dangerously violently offended

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to bring together all the results of <it>in vivo </it>studies of ethane excretion and cerebral spectroscopy in patients with schizophrenia who have dangerously seriously violently offended in order to determine the extent to which they shed light on the degree to which the membrane phospholipid hypothesis and the actions of free radicals and other reactive species are associated with cerebral pathophysiological mechanisms in this group of patients.</p> <p>Methods</p> <p>The patients investigated were inpatients from a medium secure unit with a DSM-IV-TR diagnosis of schizophrenia. There was no history of alcohol dependency or any other comorbid psychoactive substance misuse disorder. Expert psychiatric opinion, accepted in court, was that all these patients had violently offended directly as a result of schizophrenia prior to admission. These offences consisted of homicide, attempted murder or wounding with intent to cause grievous bodily harm. Excreted ethane was analyzed and quantified by gas chromatography and mass spectrometry (<it>m</it>/<it>z </it>= 30). 31-phosphorus magnetic resonance spectroscopy data were obtained at a magnetic field strength of 1.5 T using an image-selected <it>in vivo </it>spectroscopy sequence (TR = 10 s; 64 signal averages localized on a 70 × 70 × 70 mm<sup>3 </sup>voxel).</p> <p>Results</p> <p>Compared with age- and sex-matched controls, in the patient group the mean alveolar ethane level was higher (<it>p </it>< 0.0005), the mean cerebral beta-nucleotide triphosphate was lower (<it>p </it>< 0.04) and the mean gamma-nucleotide triphosphate was higher (<it>p </it>< 0.04). There was no significant difference between the two groups in respect of phosphomonoesters, phosphodiesters or broad resonances.</p> <p>Conclusion</p> <p>Our results are not necessarily inconsistent with the membrane phospholipid hypothesis, given that the patients studied suffered predominantly from positive symptoms of schizophrenia. The results suggest that there is increased cerebral mitochondrial oxidative phosphorylation in patients with schizophrenia who have dangerously and seriously violently offended, with an associated increase in oxygen flux and subsequent electron 'leakage' from the electron transport chain leading to the formation of superoxide radicals and other reactive oxygen species. In turn, these reactive species might cause increased lipid peroxidation in neuroglial membranes, thereby accounting for the observation of increased ethane excretion.</p

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Liver Fat Content in Type 2 Diabetes: Relationship With Hepatic Perfusion and Substrate Metabolism

    Get PDF
    OBJECTIVE - Hepatic steatosis is common in type 2 diabetes. It is causally linked to the features of the metabolic syndrome, liver cirrhosis, and cardiovascular disease. Experimental data have indicated that increased liver fat may impair hepatic perfusion and metabolism. The aim of the current study was to assess hepatic parenchymal perfusion, together with glucose and fatty acid metabolism, in relation to hepatic triglyceride content. RESEARCH DESIGN AND METHODS - Fifty-nine men with well controlled type 2 diabetes and 18 age-matched healthy normoglycemic men were studied using positron emission tomography to assess hepatic tissue perfusion, insulin-stimulated glucose, and fasting fatty acid metabolism, respectively, in relation to hepatic triglyceride content, quantified by proton magnetic resonance spectroscopy. Patients were divided into two groups with hepatic triglyceride content below (type 2 diabeteslow) or above (type 2 diabetes-high) the median of 8.6%. RESULTS - Type 2 diabetes-high patients had the highest BMI and A1C and lowest whole-body insulin sensitivity (ANOVA, all P < 0.001). Compared with control subjects and type 2 diabeteslow patients, type 2 diabetes-high patients had the lowest hepatic parenchymal perfusion (P = 0.004) and insulin-stimulated hepatic glucose uptake (P = 0.013). The observed decrease in hepatic fatty acid influx rate constant, however, only reached borderline significance (P = 0.088). In type 2 diabetic patients, hepatic parenchymal perfusion (r = -0.360, P = 0.007) and hepatic fatty acid influx rate constant (r = -0.407, P = 0.007) correlated inversely with hepatic triglyceride content. In a pooled analysis, hepatic fat correlated with hepatic glucose uptake (r = -0.329, P = 0.004). CONCLUSIONS - In conclusion, type 2 diabetic patients with increased hepatic triglyceride content showed decreased hepatic parenchymal perfusion and hepatic insulin mediated glucose uptake, suggesting a potential modulating effect of hepatic fat on hepatic physiology. © 2010 by the American Diabetes Association

    Measuring intracellular pH in the heart using hyperpolarized carbon dioxide and bicarbonate: a 13C and 31P magnetic resonance spectroscopy study

    Get PDF
    AIMS: Technological limitations have restricted in vivo assessment of intracellular pH (pH(i)) in the myocardium. The aim of this study was to evaluate the potential of hyperpolarized [1-(13)C]pyruvate, coupled with (13)C magnetic resonance spectroscopy (MRS), to measure pH(i) in the healthy and diseased heart. METHODS AND RESULTS: Hyperpolarized [1-(13)C]pyruvate was infused into isolated rat hearts before and immediately after ischaemia, and the formation of (13)CO(2) and H(13)CO(3)(-) was monitored using (13)C MRS. The HCO(3)(-)/CO(2) ratio was used in the Henderson-Hasselbalch equation to estimate pH(i). We tested the validity of this approach by comparing (13)C-based pH(i) measurements with (31)P MRS measurements of pH(i). There was good agreement between the pH(i) measured using (13)C and (31)P MRS in control hearts, being 7.12 +/- 0.10 and 7.07 +/- 0.02, respectively. In reperfused hearts, (13)C and (31)P measurements of pH(i) also agreed, although (13)C equilibration limited observation of myocardial recovery from acidosis. In hearts pre-treated with the carbonic anhydrase (CA) inhibitor, 6-ethoxyzolamide, the (13)C measurement underestimated the (31)P-measured pH(i) by 0.80 pH units. Mathematical modelling predicted that the validity of measuring pH(i) from the H(13)CO(3)(-)/(13)CO(2) ratio depended on CA activity, and may give an incorrect measure of pH(i) under conditions in which CA was inhibited, such as in acidosis. Hyperpolarized [1-(13)C]pyruvate was also infused into healthy living rats, where in vivo pH(i) from the H(13)CO(3)(-)/(13)CO(2) ratio was measured to be 7.20 +/- 0.03. CONCLUSION: Metabolically generated (13)CO(2) and H(13)CO(3)(-) can be used as a marker of cardiac pH(i) in vivo, provided that CA activity is at normal levels

    Lactate concentration in breast cancer using advanced magnetic resonance spectroscopy

    Get PDF
    Acknowledgements We would like to thank Dr. Nicholas Senn for conducting data auditing, Dr. Matthew Clemence (Philips Healthcare Clinical Science, UK) for clinical scientist support, Dr. Tim Smith for biologist support, Mr. Gordon Buchan for technician support, Ms Bolanle Brikinns for patient recruitment support, Ms Dawn Younie for logistic support, Prof. Andrew M. Blamire for advice on MRS. We would also like to thank Mr Roger Bourne and Ms Mairi Fuller for providing access to the patients. Data availability Data supporting this publication are stored at Institute of Medical Sciences and available upon request. Funding information This project was funded by Friends of Aberdeen and North Centre for Haematology, Oncology and Radiotherapy (ANCHOR) (RS2015 004). Sai Man Cheung’s PhD study was jointly supported by Elphinstone scholarship, Roland Sutton Academic Trust and John Mallard scholarship.Peer reviewedPublisher PD

    Variance components associated with long-echo-time MR spectroscopic imaging in human brain at 1.5T and 3T

    Get PDF
    <div><p>Object</p><p>Magnetic resonance spectroscopic imaging (MRSI) is increasingly used in medicine and clinical research. Previous reliability studies have used small samples and focussed on limited aspects of variability; information regarding 1.5T versus 3T performance is lacking. The aim of the present work was to measure the inter-session, intra-session, inter-subject, within-brain and residual variance components using both 1.5T and 3T MR scanners.</p><p>Materials and methods</p><p>Eleven healthy volunteers were invited for MRSI scanning on three occasions at both 1.5T and 3T, with four scans acquired at each visit. We measured variance components, correcting for grey matter and white matter content of voxels, of metabolite peak areas and peak area ratios.</p><p>Results</p><p>Residual variance was in general the largest component at 1.5T (8.6–24.6%), while within-brain variation was the largest component at 3T (12.0–24.7%). Inter-subject variation was around 5%, while inter- and intra-session variance were both generally small.</p><p>Conclusion</p><p>Multiple variance contributions associated with MRSI measurements were quantified and the performance of 1.5T and 3T MRI scanners compared using data from the same group of subjects. Residual error is much lower at 3T, but other variance components remain important.</p></div

    Hepatic steatosis does not cause insulin resistance in people with familial hypobetalipoproteinaemia

    Get PDF
    Item does not contain fulltextAIMS/HYPOTHESIS: Hepatic steatosis is strongly associated with hepatic and whole-body insulin resistance. It has proved difficult to determine whether hepatic steatosis itself is a direct cause of insulin resistance. In patients with familial hypobetalipoproteinaemia (FHBL), hepatic steatosis is a direct consequence of impaired hepatic VLDL excretion, independently of metabolic derangements. Thus, patients with FHBL provide a unique opportunity to investigate the relation between increased liver fat and insulin sensitivity. METHODS: We included seven male participants with FHBL and seven healthy matched controls. Intrahepatic triacylglycerol content and intramyocellular lipid content were measured using localised proton magnetic resonance spectroscopy ((1)H-MRS). A two-step hyperinsulinaemic-euglycaemic clamp, using stable isotopes, was assessed to determine hepatic and peripheral insulin sensitivity. RESULTS: (1)H-MRS showed moderate to severe hepatic steatosis in patients with FHBL. Basal endogenous glucose production (EGP) and glucose levels did not differ between the two groups, whereas insulin levels tended to be higher in patients compared with controls. Insulin-mediated suppression of EGP during lower dose insulin infusion and insulin-mediated peripheral glucose uptake during higher dose insulin infusion were comparable between FHBL participants and controls. Baseline fatty acids and lipolysis (glycerol turnover) at baseline and during the clamp did not differ between groups. CONCLUSIONS/INTERPRETATION: In spite of moderate to severe hepatic steatosis, people with FHBL do not display a reduction in hepatic or peripheral insulin sensitivity compared with healthy matched controls. These results indicate that hepatic steatosis per se is not a causal factor leading to insulin resistance. TRIAL REGISTRATION: ISRCTN35161775

    Skeletal muscle ATP synthesis and cellular H+ handling measured by localized 31P-MRS during exercise and recovery

    Get PDF
    31P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H+) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60–75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism

    Estimation of metabolite T1 relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data

    Get PDF
    Object A novel method of estimating metabolite T1 relaxation times using MR spectroscopic imaging (MRSI) is proposed. As opposed to conventional single-voxel metabolite T1 estimation methods, this method investigates regional and gray matter (GM)/white matter (WM) differences in metabolite T1 by taking advantage of the spatial distribution information provided by MRSI
    corecore